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Executive Summary 

This deliverable focuses on the development and implementation of an intelligence module designed to 

identify and recommend to the authorities / end-users possible areas for afforestation or reforestation. The 

approach is based on the application of a multi-criteria analysis method integrating satellite imagery to identify 

and recommend sites. The module identifies the deforested areas and evaluates elements of the ecological 

condition to prioritize optimal locations for reforestation practices after fire events. The output is a spatial 

decision support tool capable of guiding restoration actions based on environmental suitability and forest 

development potential. 
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1. Deforestation Module 

Deforestation is the conversion of forests to other land use, primarily caused by human activities or other 

causes like natural events (FAO, 2022). Large-scale forest cleaning or removal often leads to forest land being 

converted into non-forest uses for human purposes, such as urban development, agriculture, mining, timber 

extraction, and infrastructure expansion. Agriculture is the leading cause of deforestation, according to the 

World Wildlife Fund (Timmins et al., 2023; WWF, n.d.). Only for 2022, more than 65,000 Km2 of forest were 

lost, an area comparable to Sri Lanka or approximately 7 times the size of Cyprus. Deforestation results in the 

loss of forests and trees and the displacement of wildlife, particularly in tropical rainforests such as the 

Amazon, which hosts a significant portion of the world's biodiversity. In the Amazon, the world’s largest forest, 

around 17% has been lost over the past 50 years, mainly due to cattle ranching, with the loss of land increasing 

annually. A similar trend is observed in the Mediterranean region. Between 2001 and 2019, an estimated 5.80 

million Km2 of forests were lost, with an average annual loss of 306,000 Km2. The countries with the highest 

levels of deforestation include Spain, with approximately 12,000 Km2 lost, France, with around 11,500 Km2, 

and Portugal, with roughly 10,000 Km2. (Ciobotaru et al., 2021).   

The European Union has established initiatives and laws to contribute to preserving and protecting forests 

while trying to minimize deforestation in Europe as much as possible. One of the principal regulations requires 

all goods entering and exiting the EU to be ‘’deforestation-free’’. All new regulations and laws set by the 

European Union have one primary goal: to reduce greenhouse gas emissions by at least 55% by 2030 

compared to 1990 levels, with deforestation playing a significant role in achieving this target (European 

Council of the European Union, 2024).  

To effectively support these goals, advanced technologies such as remote sensing and Geographic Information 

Systems (GIS) have become essential tools for monitoring deforestation, assessing environmental impacts, 

and guiding conservation strategies. Geographic Information Systems combined with remote sensing 

technology can help scientists understand how forests around the globe have changed over the years, identify 

land use changes, and provide valuable data that can be used to either prevent future deforestation or help 

regenerate the forests.(Mitchell et al., 2017). Moreover, LiDAR technology offers detailed three-dimensional 

data on forest structures, enhancing the precision of deforestation monitoring. LiDAR generates accurate 

elevation models and canopy height maps using laser pulses to measure their return time. This data enables 

precise biomass measurements, canopy density, and topographical features. LiDAR-based analysis helps 

identify deforested areas, measure canopy loss, and assess forest fragmentation, which can help governments 

take the appropriate measures to minimize deforestation.(Almeida et al., 2024).   

As mentioned above, remote sensing is a high-priority technique that can be used to monitor, capture, and 

prevent deforestation. Through satellite images or aerial imagery, a change detection procedure can play a 

vital role in the defense of our forests. The Sentinel-2 imagery and multispectral images can provide valuable 
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information, such as the NDVI index, and practical insights for scientists about deforestation. In general, 

change detection compares at least two images taken at different times, making it possible to track 

deforestation progress, vegetation health, and how time affects the forest in general. This approach allows for 

rapid and precise intervention, promoting forest sustainability.(Hewarathna et al., 2024). 

For the purposes of creating the tool for identifying deforested areas in Cyprus based on satellite images, the 

change detection technique was used. According to the literature, several methods have been used including 

image classification, time series analysis, machine learning models and object-oriented analysis. Supervised 

classification methods, such as Random Forest or Support Vector Machines, categorize land cover types, but 

often require extensive training data and can be sensitive to seasonal fluctuations (Karmoude et al., 2025). 

Apart from that, this affects the platform's operational work, as the samples will need to be updated 

frequently and apart from that, it requires substantial skill and effort on the part of the image interpreter 

(Pacheco-Pascagaza et al., 2022; Quang et al., 2024).  Also, regarding the use of time series, methods such as 

the LandTrendr model and BFAST monitor vegetation trends over time, offering information on gradual 

degradation, but their negative is that their operation relies on the utilization of dense and high-quality 

temporal datasets (Fuentes et al., 2024). Regarding the utilization of object-oriented analysis techniques in 

which their operation is based on the clustering of pixels into significant objects before classification, they are 

effective for high-resolution imagery but require careful tuning and are sensitive to segmentation parameters 

(Yordanov & Brovelli, 2021). 

Taking all this into account, the change detection technique was chosen as it allows for rapid and objective 

recognition of deforestation without the need for extensive training data, reduces sensitivity to seasonal 

biases when timed appropriately, and integrates efficiently with auxiliary data to enhance accuracy. Therefore, 

it provides a practical and scalable solution for operational monitoring of deforestation. 

1.1 Methodology 

For the purposes of the deforestation module, a change detection technique was implemented to identify 

deforestation areas as shown in flowchart in  

 

Figure 1. Specifically, the model is based on the difference in reflectance values between two images, one is 

the reference, and the other is the target. The user specifies a date in the model, and the algorithm detects 

changes between the selected dates based on the previous year.  The change detection uses the spectral 

bands of Sentinel-2 imagery and additional spectral indices (described in Deliverable 3.2) to enhance the 

detection of the changes. ESA launched the Sentinel-2 mission, an optical platform equipped with a 

multispectral instrument that includes two satellites (Sentinel-2A and Sentinel-2B). Furthermore, this mission 

enables the acquisition of data in 13 spectral bands presented in Error! Reference source not found. 

indifferent spatial resolutions (10m, 20m and 60m) every five days on average (Drusch et al., 2012; Spoto et 
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al., 2012). The Sentinel-2A satellite was launched on 23 June 2015, and 2B on 7 March 2017. As a result, the 

developed modules operate only on data collected after 2015.  Is highlighted that only the bands with spatial 

resolution at 10 and 20m were used. 
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Figure 1: Flow chart of the proposed methodology. 
In the analysis used in the study, the spectral indices that are presented in  Table 1 were incorporated as new 

layers to create image composites for the abovementioned datasets. The spectral indices are described in 

detail in Deliverable D5.4.  

Table 1: Equations of spectral indices 

Satel
lite 

Spectral Indices Abbrevi
ation 

Equation Ref. 

S2
 

Normalized 
Difference 

Vegetation Index 

NDVI 𝑵𝑰𝑹 − 𝑹𝑬𝑫
𝑵𝑰𝑹 + 𝑹𝑬𝑫 (Tucker, 

1979) 

Normalized 
Difference Red 

Edge Index 

NDRE 𝑵𝑰𝑹 − 𝑹𝑬𝑫
𝑵𝑰𝑹 + 𝑹𝑬𝑫 (Gitelson 

et al., 
2003) 

Enhanced 
Vegetation Index 

EVI 𝟐. 𝟓(𝑵𝑰𝑹 − 𝑹𝑬𝑫)
	𝑵𝑰𝑹	 + 	𝟔	𝑹𝑬𝑫	 − 	𝟕. 𝟓𝑩𝑳𝑼𝑬	 + 	𝟏 (Huete et 

al., 2002) 
Green Leaf Index GLI 𝟐	 ∗ 	𝑮𝑹𝑬𝑬𝑵− 	𝑹𝑬𝑫 − 	𝑩𝑳𝑼𝑬

𝟐	 ∗ 	𝑮𝑹𝑬𝑬𝑵	 + 	𝑹𝑬𝑫	 + 	𝑩𝑳𝑼𝑬 (Louhaic
hi et al., 

2001) 
SAVI SAVI 𝟏. 𝟓(𝑵𝑰𝑹 − 𝑹𝑬𝑫)

	𝑵𝑰𝑹	 + 	𝑹𝑬𝑫 + 𝟎. 𝟓  

Structure 
Insensitive Pigment 

Index 

SIPI 𝑵𝑰𝑹 − 𝑩𝑳𝑼𝑬
𝑵𝑰𝑹 − 𝑹𝑬𝑫  (PEN¯UE

LAS et 
al., 1995) 

 
Atmospherically 

Resistant 
Vegetation Index 

ARVI 𝑵𝑰𝑹	 −	(𝟐	 ∗ 	𝑹𝑬𝑫)	+ 	𝑩𝑳𝑼𝑬
𝑵𝑰𝑹	 +	(𝟐	 ∗ 	𝑹𝑬𝑫)	+ 	𝑩𝑳𝑼𝑬 (Kaufma

n & 
Tanre, 
1992) 

Bare Soil Index BSI (	𝑺𝑾𝑰𝑹𝟏	 + 	𝑹𝑬𝑫	) 	−	(𝑵𝑰𝑹	 + 	𝑩𝑳𝑼𝑬)
(	𝑺𝑾𝑰𝑹𝟏	 + 	𝑹𝑬𝑫	) +	(𝑵𝑰𝑹	 + 	𝑩𝑳𝑼𝑬)  (Rikimar

u A et al., 
2002) 

Normalized 
Difference Water 

Index 

NDWI 𝑮𝑹𝑬𝑬𝑵−𝑵𝑰𝑹
𝑮𝑹𝑬𝑬𝑵+𝑵𝑰𝑹 (McFEET

ERS, 
1996) 

Advanced 
Vegetation Index 

AVI 9𝑵𝑰𝑹 ∗ (𝟏 − 𝑹𝑬𝑫) ∗ (𝑵𝑰𝑹 − 𝑹𝑬𝑫)𝟑  (Roy et 
al., 1996) 

Green Normalized 
Difference 

Vegetation Index 

GNDVI 𝑵𝑰𝑹 − 𝑮𝑹𝑬𝑬𝑵
𝑵𝑰𝑹 + 𝑮𝑹𝑬𝑬𝑵 (Gitelson 

et al., 
2003) 

Normalized 
Difference Moisture 

Index 

NDMI 𝑺𝑾𝑰𝑹 −𝑵𝑰𝑹
𝑺𝑾𝑰𝑹 +𝑵𝑰𝑹 (HUNTJ

R & 
ROCK, 
1989) 

Normalized Burn 
Ratio 

NBR 𝑵𝑰𝑹 − 𝑺𝑾𝑰𝑹𝟐
𝑵𝑰𝑹 + 𝑺𝑾𝑰𝑹𝟐 (Key & 

Benson, 
2006) 

Burned Area Index BAI 𝟏
((𝟎. 𝟏 − 𝑹𝑬𝑫)𝟐 + (𝟎. 𝟎𝟔 − 𝑵𝑰𝑹)𝟐) 

(Chuviec
o et al., 
2002) 
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Burned Area Index 
for Sentinel 2 

BAIS2 
:1 −<

𝑹𝑬𝟐 ∗ 𝑹𝑬𝟑 ∗ 𝑵𝑰𝑹𝒏 − 𝑮𝑹𝑬𝑬𝑵
𝑩𝟒 @

∗ (
𝑺𝑾𝑰𝑹𝟐 −𝑵𝑰𝑹𝒏
√𝑺𝑾𝑰𝑹𝟐 +𝑵𝑰𝑹𝒏

+ 1) 

(Filippon
i, 2018) 

Char Soil Index CSI 𝑵𝑰𝑹
𝑺𝑾𝑰𝑹𝟐 (A. M. S. 

Smith et 
al., 2007) 

Mid-Infrared Burn 
Index 

MIRBI 10*𝑺𝑾𝑰𝑹𝟐 − 𝟗. 𝟖 ∗ 𝑺𝑾𝑰𝑹𝟏 + 𝟐 (Trigg & 
Flasse, 
2001)  

Normalized Burn 
Ratio SWIR 

NBRSW
IR 

𝑺𝑾𝑰𝑹𝟐 − 𝑺𝑾𝑰𝑹𝟏 − 𝟎. 𝟎𝟐
𝑺𝑾𝑰𝑹𝟐 + 𝑺𝑾𝑰𝑹𝟏 + 𝟎. 𝟏  (Gerard 

et al., 
2003) 

 
 

Normalized Burn 
Ratio Plus 

NBRplu
s 

𝑺𝑾𝑰𝑹𝟐 −𝑵𝑰𝑹𝒏 − 𝑮𝑹𝑬𝑬𝑵−𝑩𝑳𝑼𝑬
𝑺𝑾𝑰𝑹𝟐 +𝑵𝑰𝑹𝒏 + 𝑮𝑹𝑬𝑬𝑵+𝑩𝑳𝑼𝑬 (Alcaras 

et al., 
2022) 

 
Also, to ensure consistency across datasets, each image composite was normalized using the minimum and 

maximum pixel values within the selected area. Additionally, to avoid any impacts from the cloud cover in the 

analysis, the images were filtered to have <10% cloud cover across the entire scene, especially above the area, 

using the CLOUDY_PIXEL_PERCENTAGE metadata to reduce the impact of clouds, as shown in the example in 

Error! Reference source not found.. Also, the cloud masking was performed using the QA60 band, where the 

pixels affected by clouds and cirrus were masked out.  

 
Reference Target 
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Figure 2: Impact of clouds on satellite images. 

Change detection was performed following the band selection and the computation of the spectral indices for 

the two satellite image composites (reference/target). In detail, a pixel-based differencing approach was 

applied to detect changes in surface reflectance. Specifically, the difference between the reference and target 

imagery was calculated using the Euclidean Distance (ED) method based on Eq.1. The normalized image 

composites were subtracted, squared, and summed across bands, followed by the square root to compute the 

final change magnitude. Higher ED values indicate more significant spectral differences suggesting greater 

changes in vegetation.  

 

𝐸𝐷 = 	%∑ 𝑋!" − 𝑋#"$
"%#     (Eq. 1) 

 
where: X represents the spectral bands (including spectral indices). 
 
Moreover, to automatically binarize the difference, the Otsu’s thresholding method (Otsu, 1979) is used, and 

then the changes are represented by pixels assigned a value of 1, and those with values of 0 are masked out 

to distinguish between changed and unchanged areas. The Otsu thresholding technique was selected due to 

its one of the best binarization thresholding method (Fan & Lei, 2012; Halder & Pereira, 2024).This technique 

computes an adaptive threshold based on the histogram of changed magnitudes and ensures an optimal 

separation between changed and unchanged regions based on the below equations.  

 

𝑂𝑇 = 	+(𝐷& − 𝐷-)!
'

&%#

 

where: 

• 𝐷! is the Euclidean distance value for a given pixel. 

• 𝐷 is the mean Euclidean distance over the dataset. 
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• p=2, representing change and no-change classes. 

The optimal threshold 𝛵∗ is found by maximizing the between-class variance: 

𝛵∗ = arg𝑚𝑎𝑥# [𝑤$(𝑇)𝑤%(𝑇)(𝜇$(𝑇) − 𝜇%(𝑇))% 

where: 

• 𝑤$(𝑇)	and 𝑤%(𝑇)are class probabilities (proportions of pixels in each class). 

• 𝜇$(𝑇)	and 𝜇%(𝑇)are the mean Euclidean distances for the two classes. 

The binary change map is generated using: 

𝐶(𝑥, 𝑦) = 5
1, 𝐷(𝑥, 𝑦) ≥ 𝛵∗(𝐶ℎ𝑎𝑛𝑔𝑒	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑)
0, 𝐷(𝑥, 𝑦) < 𝛵∗	(𝑁𝑜	𝑐ℎ𝑎𝑛𝑔𝑒)  

After the identification of the changes, they were categorized using ancillary data. Specifically, land cover data 

provided by the Copernicus Land Monitoring Service was used to classify the detected changes into specific 

categories: changes in forest areas that indicate potential areas for deforestation, changes in rural areas, 

changes in urban environments, and changes in water bodies. In addition, fire-induced changes were 

determined using the burnt area datasets derived from MODIS Burned Area Product (MCD64A1).  

 
1.2 Model Validation 

 
Finally, for the validation of the results, fire event data from the EFFIS service and the forest loss data 

from the Hansen Global Forest Change dataset were utilized. Specifically, 1000 random points within 

the burned areas and in the forest loss zones were used and compared with the deforested areas 

detected by our model. For the validation process, only summer image composites were used in 

order to minimize the presence of cloud percentage and reduce seasonal variability.  Subsequently, 

the accuracy assessment was conducted utilizing the overall accuracy metric which represents the 

percentage of correctly classified pixels calculated according to the following equation: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
Number	of	Correct	Predictions

𝑇𝑜𝑡𝑎𝑙	Number	of	Correct	Predictions
 

 

made based on the identification of known fire events in comparison with the change detection 

model that was developed for the identification of deforestation. 
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1.3 Results 

The proposed methodology, developed for the GREEN-HIT project, aimed to identify deforested zones in 

Cyprus' forests using change detection techniques, successfully identifying land cover changes with Sentinel-

2 multispectral imagery. Utilizing spectral indices suitable for vegetation condition monitoring and burn-

sensitive spectral index, along with the Euclidean spectral distance combined with Otsu-based thresholding, 

the algorithm detected areas of significant change. Moreover, the integration of MODIS burned area data into 

the model enabled spatial filtering to identify fire-induced changes, while CORINE land cover information 

allowed for reclassification into forest, agricultural, urban, and water categories.  

Through this approach, the final output provides a raster (GeoTIFF format) that highlights changes detected 

over a one-year time span, indicating possible deforested zones. To characterize all the detected changes, they 

were categorized based on their corresponding land cover types and MODIS burned areas.  

The model achieved an overall accuracy of 78.6%, indicating a robust agreement between the detected 

deforested areas and independent reference data. This result supports the reliability of the proposed 

approach for identifying and classifying changes in forested areas.  
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2. Reforestation/Afforestation Module 

Reforestation refers to the process of natural regeneration or tree planting that occurs after a natural disaster, 

such as a wildfire. This silvicultural practice fosters the development of forest structure and the many benefits 

that forests provide to human life. Reforestation encompasses all necessary actions to promote the natural 

regeneration of affected areas using ecologically appropriate tree seedlings (Brancalion & Chazdon, 2017; 

Uprety et al., 2012).  

Additionally, the European Commission places a high value on reforestation in its agenda and has recently 

published new "Guidelines on Biodiversity-Friendly Afforestation, Reforestation, and Tree Planting"(European 

Commission, 2023). These guidelines aim to provide strategies for creating new forests and planting trees in 

both urban and rural environments. The European Union has set a goal of planting 3 billion new trees by 2030, 

which can only be achieved through the combined support of authorities, forest organizations, and 

landowners (European Union, 2022).  In a world facing an increasing number of crises, reforestation stands 

out as a vital solution with numerous benefits. By restoring trees to deforested or barren land, we can reap a 

multitude of advantages (IUCN, 2018; UNEP & FAO, 2020; UNEP/MAP and Plan Bleu, 2020).  

Firstly, trees are exceptional at absorbing carbon dioxide, providing a powerful defence against the high levels 

of carbon emissions our planet faces. This leads to a reduction in greenhouse gases. Secondly, forests, and 

thus the trees, serve as habitats for millions of animal species. Preserving and enhancing the biodiversity that 

Earth has to offer is our responsibility, and reforestation can significantly contribute to this effort (Lorenz & 

Lal, 2010; Raihan, 2023). Thirdly, healthy soil is essential for sustainable agriculture and thriving ecosystems, 

and reforestation plays a key role in maintaining soil health. Trees prevent erosion, improve soil structure 

through their extensive root systems, and reduce the risk of landslides and land degradation(Gobinath et al., 

2022). Finally, forests act as natural filters for the water that flows through them. Planting trees alongside 

waterways can significantly enhance water quality(P. Smith et al., 2013). 

Remote sensing can significantly advance reforestation efforts by providing valuable data and insights that 

enhance the planning, monitoring, and management of forest restoration projects (Tatem et al., 2008). 

Reforestation is not a simple task; for it to be effective, proper forest management is essential, and remote 

sensing can play a crucial role in this process(Gitas et al., 2012; Koch et al., 2021) .  

Remote sensing simplifies reforestation management, and high-resolution satellite images offer invaluable 

data to scientists, helping to ensure successful reforestation initiatives. As time goes on, the costs associated 

with these efforts are increasing. By incorporating satellite and remote sensing data into our inventory, we 

can reduce costs for potential reforestation areas, especially in challenging locations (Cavalcante et al., 2022a).  

Additionally, multispectral and hyperspectral imaging facilitate the monitoring and detection of vegetation 

health, moisture levels, and overall ecosystem recovery (Alves de Almeida et al., 2021). Analytical models and 
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advanced intelligence are necessary to achieve successful reforestation plans with long-term sustainability in 

mind.  Finally, the effort to combat deforestation and promote reforestation is a worldwide initiative that 

requires collaboration between governments, organizations, and local communities (UNEP & FAO, 2020; 

UNEP/MAP and Plan Bleu, 2020). 

Focusing on post-fire prioritization restoration actions, spatial Multi-criteria Analysis (SMCA) is an essential 

tool for identifying areas for restoration. This complex process integrates criteria from various domains and 

disciplines allowing for the combination of diverse data types and units, as well as the processing of spatial 

information. Numerous studies have been conducted worldwide to identify areas suitable for restoration using 

remote sensing techniques and earth observation data based on the SMCA. For instance, to address trade-

offs in post-fire recovery and biodiversity conservation (Cavalcante et al., 2022b; Garcia-Gonzalo et al., 2014; 

Pedrollo et al., 2024), for post-fire reforestation management strategies or for prioritizing reforestation 

activities in burned areas (Alayan et al., 2022; Garcia-Gonzalo et al., 2014; Khalili & Duecker, 2013; Lombardo 

et al., 2023; Tzamtzis et al., 2023; Uribe et al., 2014). Furthermore, Zhang et al. (Zhang et al., 2020) combined 

the TOPSIS and entropy weight methods to assess the environmental, social, and economic objectives of forest 

restoration projects. Another study implemented by Kale et al. (Kale et al., 2015) evaluated potential 

reforestation sites in the Kamrim district of Assam in India based on criteria such as biodiversity, carbon 

storage capabilities, and demographic patterns. 

The Analytic Hierarchy Process (AHP) is one of the most widely used methods for multi-criteria decision-

making, originally proposed by Saty el. al, (T. L. Saaty, 1977). The AHP serves as a valuable tool for decision-

makers enabling them to evaluate various essential elements through pairwise comparisons (T. L. Saaty, 1990). 

In the present study, AHP was employed to assess ecological criteria for identifying areas suitable for 

reforestation. Several studies confirm this choice; for instance, Nesticò et al. (Nesticò et al., 2022) compared 

four different evaluation approaches – AHP, ELECTRE, TOPSIS, and VIKOR and found that AHP’s flexibility is a 

significant advantage as it allows for the assignment of different weights to criteria on various levels. 

Moreover, Paletto et al. (Paletto et al., 2021) utilized AHP to analyze the effects of silvicultural treatments on 

trade-offs between forest ecosystems. Additionally, Curiel-Esparza et al.(Curiel-Esparza et al., 2015) proposed 

a decision-support system that integrates climate change criteria for optimal reforestation planning using both 

Delphi Method and AHP in a case study of the Spanish forest in the Mediterranean region. Furthermore, 

Alayan et al.,(Alayan & Lakner, 2024) conducted a study to develop suitability maps for identifying priority 

restoration zones after fire events in Syrian forests. Similar approaches that prioritize restoration actions using 

AHP have also been undertaken in various studies (Arianoutsou et al., 2011; Derak & Cortina, 2014; Dosis et 

al., 2023; González et al., 2024; Hamidah et al., 2022; Rodman et al., 2022). 
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2.1 Methodology 

The proposed methodology is presented in Figure 3. Specifically, the method is based on a spatial multi-criteria 

decision analysis process utilizing the Google Earth Engine (GEE) cloud-based platform. The GEE was selected 

for the development of the reforestation module due to the immediate interaction offered between the user 

and the platform, with results being presented in real time without delays. Specifically, the GEE has its own 

APIs which allow the automation of analysis and the development of custom applications, making it flexible 

for research and operational needs. Additionally, it provides access to a vast repository of geospatial data, 

enabling analysis immediately without the need for local storage or data downloads. This makes it ideal for 

large-scale analysis. At the same time, GEE is considered an optimal and cost-effective solution for the 

development of the model as it doesn’t require high computational power or large storage capacity and is 

open access.     

The proposed methodology can be divided into five main steps as shown in Figure 3.  

a) Criteria Definition,  

b) Data collection,  

c) Standardization of the criteria, 

d) Criteria weighting and, 

e) Evaluation and ranking of results.  

 

	
 
Figure 3: Workflow for identifying priority areas for ecological restoration actions after fire events in Cyprus. 
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2.1.1 Criteria Definition: Investigating parameters that contribute to reforestation actions 

This part of the proposed methodology focuses on gathering all the parameters considered in the reforestation 

actions for burned areas. For the selection of these parameters, meetings were held with the Department of 

Forestry in Cyprus (Figure 4). Is a critical part of the proposed methodology ensuring that all relevant factors 

for effective restoration are considered and aligned with local expertise. 

 

	
Figure 4: Meeting with the Department of Forests in Cyprus to discuss the selection of key parameters for 

reforestation actions in burned areas. 

 

During these meetings, a questionnaire about the importance of several parameters related to reforestation, 

is presented in Figure 5 was given. This questionnaire includes several parameters as shown in Table 2 that 

had been identified in similar studies based on the literature review that was conducted. It is important to 

note that the questionnaire was answered through a discussion exclusively with the participants who attended 

the meeting and are the experts in the domain, to determine the parameters that contribute to the restoration 

actions of burnt areas that are implemented in Cyprus national forests by the Department of Forests. 



	

WP6, D6.3, v2.0 	
Page 18 of 41	

 



	

WP6, D6.3, v2.0 	
Page 19 of 41	

 



	

WP6, D6.3, v2.0 	
Page 20 of 41	

 



	

WP6, D6.3, v2.0 	
Page 21 of 41	

 



	

WP6, D6.3, v2.0 	
Page 22 of 41	

 



	

WP6, D6.3, v2.0 	
Page 23 of 41	

 

Figure 5: Questionnaire used with the Department of Forests to gather expert input on the parameters 

influencing reforestation actions. 
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Table 2: Parameters identified through the literature and included in the questionnaire to gather expert input 

for reforestation actions. 

Category Parameters 
Morphological  Elevation 

Aspect 
Slope 

Climatic Temperature 
Precipitation 

Environmental Disturbances Soil Erosion 
Fire severity 
Distance from burned area 

Build Environment Distance from roads 
Distance from residential areas 
Population Density 

Natural Environment Forest areas 
Shrublands 
Agricultural areas 
Grasslands 
Urban Areas 
Bare Soil/ Sparse Vegetation 
Water Bodies 
Mosses and Lichens 
Normalized Difference Vegetation Index - NDVI (-1: Bare soil or 
unhealthy vegetation to +1: Healthy vegetation) 
Tree Density 
Distance from Protected areas (Natura2000) 
Distance from rivers 

	
In addition, post-fire management plans of burned areas were examined, prepared, and implemented 

following a decision by the Council of Ministers by the DoF, the competent authority for forest fires. The post-

fire management plans for the burnt areas provided by the DoF involved restoration actions for two fire 

events:  the Soleas fire (19/6/2016) and the Argaka fire (18/6/2016). These plans aim to define the appropriate 

manipulations and spatial and temporal analysis of the measures to restore the pre-existing forest ecosystem 

and re-establish the forest’s regulatory functions over time.  

Based on Post-Fire Management Plans, restoration measures are usually divided into two main categories: 

A. Short-term measures: These measures begin immediately and must be largely completed, within a 

short period of time after the forest fire is extinguished. The effectiveness of these measures can be 

observed in a relatively short period after their completion 
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B. Medium-term measures: These measures can be started at the same time with the short-term 

measures but may be completed over an extended period. Also, their effectiveness is expected to be 

realized over a longer time compared to short-term measures. 

 

2.1.2 Data Collection 

Based on the information gathered from the post-fire management plans and the discussions with the DoF, 

the criteria for developing the model were identified. In addition, the availability of corresponding geospatial 

data was considered for representing the criteria. Also, it is highlighted that we chose to use factors that could 

be derived from freely available data, but were also useful for the determination of the areas with restoration 

needs.  

I. Topographic information 

Topography influences both surface runoff dynamics and ecological patterns (Khoirunisa et al., 2021; 

Yilmaz et al., 2023). Lower elevation presents slower flow rates compared to higher elevations, leading 

to water accumulation in valleys, which can impact climate conditions, vegetation types, species 

distribution, and ecological recovery (Lu et al., 2020). Steeper slopes present unique challenges, 

including higher risks of soil erosion, increased water runoff speed, and changes in soil moisture 

retention, all of which influence tree species selection and survival rates, (Jiang et al., 2019; Marden, 

2012) as well as complicated logistics (Hazarika et al., 2021). Apart from that the steep areas presents 

higher risk to landslides and floods(Morales et al., 2021). Additionally, the aspect can influence 

microclimate conditions like sunlight exposure and moisture levels for example east-facing slopes 

receive more incoming solar radiation in mountain areas and this help in selecting sites that can support 

the regeneration of vegetation (Dosis et al., 2023; Pourtaghi et al., 2015). 

II. Land Cover 

The land cover was used because this study focused on restoring forested and vegetated areas(Orsi & 

Geneletti, 2010).  

III. Vulnerability to wildfire hazards 

In terms of vulnerability to wildfire hazards the analysis considered the burnt severity and fire frequency. 

Specifically, in this study it was assumed that the burn severity and the fire frequency could determine 

the potential for natural regeneration, suggesting that the active restoration actions should prioritize 

ecosystems most heavily impacted by fires(Fernandez et al., 2023; Maillard et al., 2022). Additionally, 

burn severity influences soil quality and seed bank viability. High-severity fires can destroy seed banks 

and soil structure, leading to artificial reforestation actions with resilient species, while lower-severity 

fires might allow for natural regeneration(Shi et al., 2022). 
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IV. Tree Density 

The regeneration of the species and of the forest as well, is dependent in the canopy seed bank 

(Daskalakou & Thanos, 2004). In this study the tree density was utilized due to the assumption that set, 

where in denser forest there is larger seed production (Boydak, 2004). 

V. Meteorological Factors (mean temperature and total precipitation) 

The meteorological factors were selected to identify suitable conditions for the growth of most of the 

species. For example, high altitudes due to lower temperatures are more suitable for many species. 

Additionally, the variations of the precipitation and temperature are depended also by the aspect 

(Cavalcante et al., 2022a). 

Table 3: List of main selected indicators and basic information. 

Criteria Source Spatial Resolution Processing Steps 

Topographic 
information 

Elevation 

SRTM 
(GEE) 

 
 

30m 

1. Calculates Slope in 
Degrees. 

2. Calculates Aspect in 
Degrees. 

3. Reproject 
4. Resample 
5. Reclassification 

Slope 

Aspect 

Land Cover 
 

Corine 
Land Cover  100m 

1. Reproject 
2. Resample 
3. Reclassification 

Vulnerability to 
wildfire hazards  

 

Fire Severity Sentinel-2  
(dNBR) 10m 

1. Pre- and post-fire 
imagery 

2. Cloud mask 
3. Spectral indices 

calculation 
4. Reclassification 

Fire 
Frequency 

European 
Forest Fire 
Information 

System 
(EFFIS) 

20-250m 

1. Load the EFFIS data 
in GEE 

2. Fire frequency 
calculation 

3. Distance from 
historical fire events 

4. Reproject 
5. Resample 
6. Reclassification 

Tree Density 
Copernicus: 

Land 
 

10-20m 

1. Load the data in 
GEE. 

2. Reproject 
3. Resample 
4. Reclassification 

 

Meteorological 
factors  Temperature 

MODIS 
(Land 

Surface 
Temperatur

e) 

1Km 

1. Mean LST for the 
selected period. 

2. Kelvin to Celsius  
3. Reproject 
4. Resample 
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 5. Reclassification 
 

Precipitation CHIRPS 5566 meters 

1. Mean precipitation 
for the selected 
period. 

2. Reproject 
3. Resample 
4. Reclassification 

 
	
	
2.1.3 Implementation of Multicriteria Analysis Using the Analytical Hierarchy Process 

Standardization of the criteria: For this study, several factors were selected for the multi-criteria analysis; each 

factor has its own units and distribution. To combine factors with the same scale of values (Uribe et al., 2014) 

the standardization of each factor is performed in this section, as shown in  Table 3 where the original values 

were transformed into comparable units.  

Table 3: Reclassification of criteria for the identification of priority areas for natural or artificial reforestation. 

Criteria 0 1 3 5 Source 

Topographic information 

Elevation  0-250 250-500 >500 (Fernandez et 
al., 2023) 

Aspect (O)   

 N (0-22.5), 
NE (22.5-

67.5),  
NW (292.5-

337.5), 
N (337.5-

360) 

 E (67.5-
112.5), 

SE (112.5-
157.5),  

S (157.5-
202.5),  

SE (202.5-
247.5),  

W (247.5-
292.5) 

 (Dosis et al., 
2023; Lu et al., 

2020) 

Slope (O)  0-15 15-25 >25  (Yilmaz et al., 
2023) 

Land Cover 
Corine Land Cover 

Water 
Bodies, 

Artificial 
surfaces, 
Sparse or 

No 
vegetation, 
Wetlands, 

Agriculture 
land 

Grasslands 
and 

Shrublands 
- Forest  

 (Fernandez et 
al., 2023; Nurda 
et al., 2020; Van 

Duong & 
Schimleck, 

2022) 

Tree Density (%)  >40 20-40 0-20  

Vulnerability to wildfire 
hazards  

Fire history 
(reoccurrence)  

 1 2 >3 (Fernandez et 
al., 2023)  

Fire Severity (dNBR) <163 163-271 271-439 >439  (Key & 
Benson, 2006) 

Meteorological factors 

Precipitation (mm)  >30 25-30 <25  (Bhattacharya 
et al., 2022) 

Temperature  10-28.95 28.95-32.04 >32.04 

(Ali & Ahmad, 
2020; 

Bhattacharya et 
al., 2022)  
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Criteria weight: To prioritize areas effectively, criteria sets are quantified, and weights are assigned to 

determine their significance in decision-making processes. The proposed methodology was conducted utilizing 

the Analytic Hierarchy Process (AHP).  In this method, the AHP is involved in the weighing and ranking of the 

selected criteria enabling a hierarchical structure that allows the pairwise comparison, making it easier to 

understand and prioritize the most important aspects of the model based on the Saaty et al.,1977  (T. L. Saaty, 

1977)  to compare all factors against each other based on their importance on a scale of 1 to 9 as shown in 

Table 4. The value 1 represents equal importance between two factors, which means that contribute equally 

to the objective. In contrast, value 9 represents extreme importance, which means that evidence favoring one 

over the other is of the highest possible validity. The importance of each factor was assigned based on 

stakeholders’ discussion, literature review, and researcher’s knowledge.	 

Table 4: Saaty Rating Scale 

Intensity of importance  Remark 
1 Equal importance  
3 Moderately more important 
5 Strongly more important 
7 Very strongly more important  
9 Extremely more important 

2,4,6,8 Intermediate values 

 
After that, the final qualitative weights were determined using the judgment matrix which is given in Eq. 1 

which indicates the degree of the expert’s preference between individual criteria influencing the selection of 

the optimal placement. Specifically, the standardized relative weight was determined by dividing each element 

of the pairwise matrix by the total sum of its corresponding column. According to the results obtained from 

this approach, the higher the resulting weights, the greater the influence of the parameters on the 

reforestation actions, based on their relative importance. Also, each element within the matrix was divided by 

the sum of its row to create a standardized pairwise comparison matrix. The weight for each criterion was 

then determined by calculating the average of the normalized values for each factor.   

 

𝐴 =

⎝

⎛

𝐶$$ 𝐶$% ⋯ 𝐶$('($) 𝐶$'
𝐶%$ 𝐶%% ⋯ 𝐶%('($) 𝐶%'
⋮ ⋮ ⋱ ⋮ ⋮
𝐶'$ 𝐶'% ⋯ 𝐶'('($) 𝐶''⎠

⎞	
1	
	

 
Additionally, to ensure the consistency of the pairwise comparison factors using the Consistency Index (CI) 

based on Eq. 2 
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𝐶𝐼 = 	
𝜆*+, − 1
𝑛 − 1

 2 

 

where: 𝜆*+, = the largest eigenvalue of the pairwise comparison matrix evaluation and n is the number of 

criteria used in the analysis. The 𝜆*+, is given by the following equation. In details the Eigenvalues (or Relative 

Weights) were calculated by averaging the rows of each matrix and the maximum Eigenvalue was equal to the 

number of factors and in cases where the 𝜆*+,=n the judgments were consistent.   

𝜆*+, =	_𝐶𝑉-.

'

-

 

 

After that, the Consistency Ratio (CR) was calculated based on the Eq. 3 to assess the reliability of the findings 

compared to the random judgments. According to the CR values when the CR is 0.10 or greater the judgments 

are considered to be unreliable that means the wight values of the matrix indicate inconsistencies and the 

AHP may not provide a meaningful result and a lower CR ratio indicates more consistency (T. Saaty, 1980) 

 

𝐶𝑅 = 	
𝐶𝐼
𝑅𝐼

 3 

 

where: the RI is the Ratio Index and is for different ‘n’ values that are obtained as shown in Table 5. 

Table 5: Random consistency indices. 

n 1 2 3 4 5 6 7 8 9 10 
Random 

Consistency 
Index (RI) 

0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

 
Consequently, the aggregation was performed using the weighted linear summation method. Specifically, the 

raster layer for each factor multiplied by their respective criterion weight and after that they are summed as 

indicated in Eq. 4  and based on this the final map about the prioritization of the areas for reforestation actions 

was developed.  

 

𝑅𝑁 =	_(𝑤- ∗ 𝜒-)
'

-/$

 
4 
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Where: RN is the Reforestation needs, 𝑤-  is the weight for each factor and 𝜒-  is the factor I and the n is the 

number of factors.  

 

2.2 Evaluation and Ranking of Results  

The evaluation of the model was conducted using the sensitivity analysis technique. Given that the use of 

weights can introduce subjectivity, a sensitivity analysis was incorporated to quantify the impact of variations 

in specific inputs on the overall outcomes. This analysis provides insights into the influence of each weight on 

the final results. The weight values were adjusted one at a time by ±5% starting from 0 to ±20%, and the area 

of each class was calculated (Saltelli et al., 1999).  

The proposed methodology was tested in the Solea and Argaka fire events. The findings of this study are 

categorized into three main groups: a) the outcomes of the AHP analysis and spatial suitability maps, b) the 

sensitivity analysis and c) the validation of the results in the test area. These key insights are presented as 

follows: 

§ Analytical Hierarchy Process (AHP) results and suitability maps:  

A pair-wise comparison was conducted among all pairs of the nine selected parameters for the calculation of 

the weight assigned to each factor. Then, the comparison of the parameters based on their importance in 

forest restoration actions was implemented with the method proposed by Satty et al., as described in the 

methodology section. The results of the pairwise comparison of potential independent variables contributing 

to the prioritization of post-fire restoration actions, based on their importance on a scale of 1-9 are presented 

in 7. 

Table 7: Pairwise comparison between the nine criteria involved in the post-fire restoration. 

  Fire 
Severity 

Fire 
History 

Tree 
Density 

Corine 
Land 
Cover 

Slope Elevation Aspect Precipitation Mean 
Temperature 

Fire Severity 1.00 5.00 2.00 3.00 5.00 7.00 7.00 5.00 5.00 
Fire History 0.20 1.00 0.33 0.33 3.00 4.00 4.00 3.00 3.00 
Tree Density 0.50 3.00 1.00 2.00 6.00 7.00 7.00 5.00 5.00 
Corine Land 

Cover 0.33 3.00 0.50 1.00 5.00 6.00 6.00 4.00 4.00 

Slope 0.20 0.33 0.17 0.20 1.00 2.00 2.00 0.33 0.33 
Elevation 0.14 0.25 0.14 0.17 0.50 1.00 1.00 0.33 0.33 

Aspect 0.14 0.25 0.14 0.17 0.50 1.00 1.00 0.33 0.33 
Precipitation 0.20 0.33 0.20 0.25 3.00 3.00 3.00 1.00 1.00 

Mean 
Temperature 0.20 0.33 0.20 0.25 3.00 3.00 3.00 1.00 1.00 

𝜆"#$ = 9.761 CI=0.095 CR=7% 
 

The weights for each factor were calculated utilizing the eigenvector solution method, where, in our case, the 

largest eigenvalue was calculated to be 9.761. The corresponding CI was 0.095, which confirms the consistency 

of the model because CI values closer to zero reflect greater consistency. A further consistency check was 
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conducted based on the CR which achieved a 7% using the RI equal to 1.45 for the case of nine different 

factors. This is below the commonly accepted threshold of 10%, indicating that the pairwise comparisons 

conducted were reliable and consistent.  

Overall, the results obtained using the AHP demonstrate a well-structured consistent decision-making process 

supporting the reliability of the findings. Based on the AHP, the derived weights are the following: the fire 

severity has the higher importance in the model, achieving a weight of 29.4%, showing the dominant role in 

the prioritization of reforestation actions. This was followed by tree density (22.4%), Corine Land Cover 

(16.90%), and fire history (10.10%), highlighting the significant contribution of vegetation structure, land use, 

and fire frequency. Additionally, the climatic factors, precipitation (6.10%), and mean temperature (6.20%) 

also played a notable role. Moreover, the topographic features, slope (3.8%), elevation (2.50%), and aspect 

(2.60%) had less influence on the model but remained relevant in guiding the reforestation actions. The higher 

the weights, the more the influence of the parameters on the post-fire restoration needs based on the relative 

importance. The weights derived from the normalized pairwise comparison matrix were used to develop a 

model for prioritizing restoration needs in burned areas. The model presented in Equation 11 was applied to 

generate a post-fire restoration prioritization map. The output composite map is categorized into three classes 

(Low, Medium and High). Low and medium priority correspond to areas that have the potential for natural 

recovery respectively, while high priority areas require artificial restoration actions. The model was applied to 

a polygon encompassing 102.96 km2 covering both the burnt and the surrounding regions.  

𝐺𝑟𝑒𝑒𝑛𝐻𝐼𝑇 − 𝑅𝐸𝑆𝑇𝑂𝑅𝐴𝑇𝐼𝑂𝑁	𝐼𝑛𝑑𝑒𝑥	(𝐺𝑅𝐸𝑆𝑇𝑂)

= 3.8	 × 𝑆𝐿𝑂𝑃𝐸 + 2.5	 × 𝐸𝐿𝐸𝑉𝐴𝑇𝐼𝑂𝑁 + 2.6	 × 𝐴𝑆𝑃𝐸𝐶𝑇 + 29.4	 × 𝑑𝑁𝐵𝑅

+ 10.1	 × 𝐹𝐼𝑅𝐸	𝐹𝑅𝐸𝑄𝑈𝐸𝑁𝐶𝑌 + 16.9	 × 𝐿𝐴𝑁𝐷	𝐶𝑂𝑉𝐸𝑅 + 6.2	 × 	𝐿𝑆𝑇

+ 6.1	 × 𝑃𝑅𝐸𝐶𝐼𝑃𝐼𝑇𝐴𝑇𝐼𝑂𝑁 + 22.4 ∗ 𝑇𝑅𝐸𝐸	𝐷𝐸𝑁𝑆𝐼𝑇𝑌 

Eq.	5	
Additionally, the map developed based on the GRESTO index for the Solea fire event is presented in  Figure 6. 

The analysis shows that within the selected polygon, the majority of the area (82%) is classified as low priority, 

while moderate and high priority areas consist of 13% and 5% respectively. When focusing specifically on the 

burned area, the most significant area (52%) falls within the medium priority category, followed by high 

priority 38% and low priority 10%. According to the restoration actions that were implemented in the Solea 

fire event by the DoF, 4.12% of the burned area was unburned. Regarding the restoration action, 71.54% was 

selected to recover naturally, while in the remaining part of the burned area restoration actions like spot 

sowing, planting, broadband seeding etc were implemented Table 6. 

Similarly, for the Argaka fire event, as shown in Figure , the selected polygon is mainly classified as low priority 

(80%), with high priority and medium priority areas representing 11% and 9% respectively. However, when 

examining only the burned area, the largest part (52%) corresponds to high priority, followed by medium 
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priority (40%) and low priority (8%). Moreover, according to the restoration actions that were implemented 

in the Argaka fire event by the DoF, only 0.59% of the burned area was unburned. Regarding the restoration 

action, a small part 4.62% was selected to recover naturally, while in the remaining part of the burned area 

(94.79%) restoration actions were implemented as shown in Table 6. 

Table 6: Percentage of area cover per reforestation method for Solea and Argaka fire events. 

Solea Argaka 

Reforestation method 
Percent area per 

reforestation method 
(%) 

Reforestation method 
Percent area per 

reforestation 
method (%) 

Natural Regeneration 71.54 Natural Regeneration 4.62 
Spot Sowing 11.22 Spot seeding 24.45 

Broadhand seeding 9.52 Broadhand seeding 12.01 
Planting 1.22 Terraces - Planting 2 

Terraces – Planting or Seeding 2.38 Terraces - Spot seeding 49.36 
Unburned 4.12 Unburned 0.59 

  Mini terrace - Seeding 6.74 
  Coppicing 0.23 
    

	
Figure 6: Prioritization of reforestation needs map derived from GRESTO Index for Solea fire event. 

  
Figure 8: Prioritization of reforestation needs map derived from GRESTO Index for Argaka fire event 
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§ Sensitivity Analysis  

In this study, a sensitivity analysis was conducted to evaluate the robustness and the reliability of the results 

since the use of the weights can be subjective. This analysis provides insights regarding the influence of each 

weight on the final model. The weight values were adjusted using the One At a Time (OAT) approach, which is 

based on the sequential adjustment of the criteria weights. Specifically, the nine selected criteria used for the 

development of the GRESTO Index were adjusted one at a time by ±20% starting from 0 to ±100%. Based on 

this approach there are a maximum of 99 interchanges in the weights’ adjustments during the sensitivity 

analysis. Figure  represents the areas corresponding to each priority class (low, medium and high) for all 

scenarios.  

Based on the heatmap for the low-priority class (represented in green color) which corresponds to the areas 

that are not affected by fire or have low impacts that do not require immediate interventions, the results show 

stability under the different parameter adjustments as indicated by the low variability in the estimated areas. 

In contrast, the medium priority class (shown in orange color), where the area is expected to recover naturally 

demonstrates moderate sensitivity to weight adjustments. Specifically, the land cover and the fire frequency 

show a significant influence on the area distribution highlighting their importance in the model and especially 

in identifying areas suitable for natural restoration. About the high priority class (represented in red color), 

which corresponds to severely affected areas requiring urgent restoration actions shows the highest sensitivity 

to parameter weight adjustment, especially for the land cover, the fire frequency and the dNBR index showing 

the important role in the identification of areas that need artificial restoration actions.           
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Figure 9: Area distribution based on weight percentage adjustment per parameter for Solea fire event. 

Regarding the Argaka case study as shown in  

Figure  the heatmap for the low-priority class indicates a high degree of stability, with minimal variations in 

area distribution across the range of weight adjustments for the majority of the parameters indicating low 

sensitivity to weight modifications. In contrast to the low-priority class, the medium-priority class 
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demonstrates moderate sensitivity to parameter weight adjustments. The most influential factors in area 

distribution are land cover, fire frequency, and dNBR. Also, the high-priority class presents the highest 

sensitivity to parameter weight adjustments. Specifically, the land cover, fire frequency, and dNBR show 

substantial changes in area distribution across the adjustments. Compared to the Sole case study, the Argaka 

results show similar trends with the low-priority class presenting high stability and the medium and high-

priority classes displaying greater sensitivity to parameter adjustments. The influence of land cover, fire 

frequency, and dNBR across both case studies highlights the pivotal role in post-fire restoration actions and 

decision-making.  
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Figure 10: Area distribution based on weight percentage adjustment per parameter for Argaka fire event.	
Moreover, to enhance the sensitivity analysis, Cumulative Distribution Functions (CDFs) were generated for 

the feasibility scores of the GRESTO Index, showing the behavior of the index under the different weight 

adjustments for each parameter. These CDF plots provide additional insights for the distribution of feasibility 

scores for the index showing the stability and the sensitivity of the model. In detail, the, x-axis of the CDF plots 

represents the feasibility scores of the GRESTO index while the y-axis represents the cumulative probability 

(ranging from 0 to 1). Each curve in the model corresponds to a different weight adjustment applied to the 

parameters allowing the comparative analysis of their impact.  The visualization of the sensitivity analysis for 

Solea case study which is presented in Figure Error! Reference source not found. showed that Slope, Elevation, 

Aspect, LST, and Precipitation parameters are less sensitive indicators. Their CDF curves show close overlaps 

indicating that changes in the weight associated with these indicators have a minimal impact on the 

prioritization model. In contrast, the most sensitive indicators are dNBR, fire frequency and the land cover 

which have high variability, especially in the larger weight adjustments showing their significant influence on 

the model outcomes. Additionally, the tree density displays medium variability in the model showing also its 

importance in the model. 

The same analysis was conducted also for the Argaka case study as presented in Figure , showing similar 

patterns with Solea case study. Specifically, the Elevation, Aspect, LST and Precipitation also demonstrated 

minimal sensitivity, with closely overlapping CDF curves across different weight adjustments. However dNBR, 

fire frequency and land cover remained the most sensitive indicators, showing substantial variability and 

significant influence on the feasibility score distribution. Tree density also showed medium sensitivity in 

Argaka, emphasizing its moderate impact on the feasibility scoring process.  

Overall, both case studies show the critical role of fire-related parameters (dNBE and fire frequency) and land 

cover as primary drivers of variability in feasibility scoring, while topographic factors and climatic parameters 

demonstrate more stable behavior.  
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Figure 11: Cumulative distribution of feasibility scores by weight index for Solea fire event. 
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Figure 12: Cumulative distribution of feasibility scores by weight index for Argaka fire event. 

	

§ Validation of the model:  

The accuracy assessment based on the confusion matrix that was created showed a very good correlation of 

the model in determining the prioritization of reforestation for the Solea fire event. As mentioned above, the 

evaluation was carried out by comparing the results of the model with ground data provided by the 

Department of Forests.  

Based on the confusion matrix that was created, it appears that the model agrees with the terrestrial data. 

Specifically, the model achieves an overall accuracy of 80.9%, indicating substantial agreement. Moreover, the 

precision, recall, and F1-scores were examined for each class to evaluate the model's performance. For the 

low-priority class, the model showed a precision of 0.53 and a perfect recall of 0.83, and the F1-score was 

0.65. This indicated a high sensitivity in distinguishing low-priority areas with moderate reliability. The 

medium-priority class, which was the most dominant category in terms of its spatial extent, showed strong 

classification performance, with a precision of 0.89, a recall of 0.84, and an F1-score equal to 0.87, showing 
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the model’s robustness in accurately identifying this class. In addition, for the high-priority class, the model 

achieved a precision of 0.66, but a higher recall of 0.70 and an F1 score of 0.68, suggesting a relatively balanced 

performance in identifying high-priority zones. 

Regarding Argaka fire event, the model achieves an overall accuracy of 72.3%, indicating substantial 

agreement. Moreover, the precision, recall, and F1-scores were examined for each class to evaluate the 

model's performance. For the low-priority class, the model showed a precision of 0.15 and a perfect recall of 

0.77, and the F1-score was 0.25. This indicated a high sensitivity in distinguishing low-priority areas with low 

reliability in this case. The medium-priority class showed medium classification performance, with a precision 

of 0.14, a recall of 0.81, and an F1-score equal to 0.25 and  for the high-priority class, the model achieved a 

precision of 0.98, but a recall of 0.72 and an F1 score of 0.83, suggesting a relatively balanced performance in 

identifying high-priority zones. 
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3. Limitations 
There are some operational limitations regarding the tool for identifying degraded areas. Regarding the 

maximum allowed area for processing, it is limited to 4,000 km². Beyond this limit, the algorithm may not 

produce results, presenting an error in the following manner "ee.ee_exception.EEException: User memory limit 

exceeded.". Additionally, users can expect a processing time of approximately 5 to 10 minutes to retrieve 

results, depending on the selected area and timeframe. Additionally, to avoid seasonal effects and enhance 

the reliability of the results, it is recommended to perform analyses using images selected from dates between 

May and October, especially for the deforestation module. Another limitation concerns data availability. Since 

the algorithm utilizes Sentinel-2 harmonized data, the methodology is only valid for dates after April 1, 2018 

Figure 7. 

	
Figure 7: Data availability for Sentinel-2 Harmonized. 

	
	 	



	

WP6, D6.3, v2.0 	
Page 41 of 41	

4. Conclusions 

Overall, the findings demonstrate that the proposed methodology for the identification of deforestation areas 

provides an accurate and reliable framework for detecting and monitoring deforestation, offering valuable 

insights for policymakers and stakeholders in managing and preventing forested ecosystems.  

Although the GRESTO index was applied and validated in two specific fire events in Cyprus (Solea and Argaka), 

the structure and design of the model support its potential for generalization and wider application across the 

country. The use of standardized and freely available geospatial datasets (e.g. Sentinel-2, MODIS, CHIRPS, 

SRTM, Copernicus) ensures consistent data coverage for any fire-affected area within Cyprus. Furthermore, 

the spatial and temporal flexibility of the model - achieved through the dynamic parameterization of the region 

of interest (roi), the fire date (startdate_post) and the adaptive criterion weights - allows its deployment in 

different geographical contexts and post-fire scenarios without structural modifications. 

While the model was evaluated using ground reforestation data provided by the Department of Forests, for 

the Solea and Argaka events only, its successful performance, especially in the case of Solea (accuracy: 80.9%), 

demonstrates its robustness under realistic field conditions. The lower accuracy observed in the Argaka case 

highlights the need for additional site-specific validation, without, however, undermining the conceptual 

soundness of the model or its spatial scalability. 

It is important to note, however, that a perfect match between the model predictions and the implemented 

restoration actions cannot always be expected. In some areas identified by the model as high priority, 

restoration activities may not have been implemented due to limited resources, inaccessibility, or operational 

constraints. Conversely, some areas where restoration actions were implemented may not have been 

classified as high priority by the model, possibly due to management decisions influenced by political, 

economic, or local ecological parameters. These discrepancies highlight the role of the model as a decision 

support tool rather than a prescriptive solution. 

	
	


